Classification-based financial markets prediction using deep neural networks

نویسندگان

  • Matthew Dixon
  • Diego Klabjan
  • Jin Hoon Bang
چکیده

Deep neural networks (DNNs) are powerful types of artificial neural networks (ANNs) that use several hidden layers. They have recently gained considerable attention in the speech transcription and image recognition community (Krizhevsky et al., 2012) for their superior predictive properties including robustness to overfitting. However their application to algorithmic trading has not been previously researched, partly because of their computational complexity. This paper describes the application of DNNs to predicting financial market movement directions. In particular we describe the configuration and training approach and then demonstrate their application to backtesting a simple trading strategy over 43 different Commodity and FX future mid-prices at 5-minute intervals. All results in this paper are generated using a C++ implementation on the Intel Xeon Phi co-processor which is 11.4x faster than the serial version and a Python strategy backtesting environment both of which are available as open source code written by the authors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An adaptive estimation method to predict thermal comfort indices man using car classification neural deep belief

Human thermal comfort and discomfort of many experimental and theoretical indices are calculated using the input data the indicator of climatic elements are such as wind speed, temperature, humidity, solar radiation, etc. The daily data of temperature، wind speed، relative humidity، and cloudiness between the years 1382-1392 were used. In the First step، Tmrt parameter was calculated in the Ray...

متن کامل

Investigating Financial Crisis Prediction Power using Neural Network and Non-Linear Genetic Algorithm

Bankruptcy is an event with strong impacts on management, shareholders, employees, creditors, customers and other stakeholders, so as bankruptcy challenges the country both socially and economically. Therefore, correct prediction of bankruptcy is of high importance in the financial world. This research intends to investigate financial crisis prediction power using models based on Neural Network...

متن کامل

A framework for Measuring the Dynamics Connections of Volatility in Oil and Financial Markets

Investigating connections between financial and oil markets is important for investors and policy makers. This knowledge allows for appropriate decision making. In this paper, we measure the dynamic connections of selected stock markets in the Middle East with oil markets, gold, dollar index and euro-dollar and pound-dollar exchange rates during the period February 2007 to August 2019 in networ...

متن کامل

Prediction of pore facies using GMDH-type neural networks: a case study from the South Pars gas field, Persian Gulf basin

The current study proposes a two-step approach for pore facies characterization in the carbonate reservoirs with an example from the Kangan and Dalanformations in the South Pars gas field. In the first step, pore facies were determined based on Mercury Injection Capillary Pressure (MICP) data incorporation with the Hierarchical Clustering Analysis (HCA) method. In the next step, polynomial meta...

متن کامل

Financial Time Series Forecasting Using Artificial Neural Networks

Financial and capital markets (especially stock markets) are considered high return investment fields, which in the same time are dominated by uncertainty and volatility. Stock market prediction tries to reduce this uncertainty and consequently the risk. As stock markets are influenced by many economical, political and even psychological factors, it is very difficult to forecast the movement of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Algorithmic Finance

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2017